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INTRODUCTION

PURPOSE .

General aviation piston engine exhaust emission tests were conducted at the
National Aviation Facility Experimental Center (NAFEC) for the following
reasons:

1. Determine and establish total exhaust emissions characteristics for a
representative group of current production general aviation piston engines.

2, Determine the effects of leaning-out of the fuel metering system on
exhaust emissions.

3. Verify the acceptability of test procedures, testing techniques, instru-
mentation, etc.

4, Determine reductions in operating limits and safety margins resulting
from fuel system adjustments/modifications evaluated for improved piston
engine exhaust emissions characteristics.,

BACKGROUND.

Beginning in 1967, Congress enacted a series of laws which added environmental
considerations to the civil aviation safety, control, and promotional functioms
of the Federal Aviation Administration (FAA). This legislation was in response
to the growing public concern over envirommental degradation. Thus, the FAA
was committed to the development, evaluation, and execution of programs
designed to identify and minimize the undesirable environmental effects attri-
butable to aviation,

In accordance with the Clean Air Act Amendments of 1970, the Environmental
Protection Agency (EPA) established emission standards and outlined test pro-
cedures when it issued EPA rule part 87 in January 1973, The Secretary of
Transportation, and therefore the FAA, was charged with the responsibility for
issuing regulations to implement this rule and enforcing these standards,

Implementation of this rule was contingent on the FAA's finding that safety

was not impaired by whatever means was employed to achieve the standards. For
this reason, the FAA undertook a program, subsequent to the issuance of the EPA
emission standards in July 1973, to determine the feasibility of implementation,
verify test procedures, and validate test results.

There was concern that the actions suggested in order to comply with the EPA
emission standards, such as operating engines at leaner mixture settings dur-
ing landing and takeoff cycles, might compromise safety and/or significantly
reduce engine operating margins, Therefore, the FAA contracted with Avco
Lycoming and Teledyne Continental Motors (TCM) to select engines that they con-
sidered typical of their production, test these engines as normally produced

ey —— — e ——————— e © o em




to establish a baseline emissions data base, and then alter (by lean-out
adjustments) the fuel schedule and ignition timing to demonstrate methods by
which the proposed EPA limits could be reached. In the event that hazardous
operating conditions were indicated by the manufacturer's tests, independent
verification of data would be necessary. Therefore, it was decided to
duplicate the manufacturer's tests at NAFEC to provide the needed verifica-
tion and expand the emissions data base through independent testing.

This report presents the NAFEC test results for the Teledyne Continental
Motors (TCM) GTSI0-520-K piston engine (S/N220015), It should be noted that
since the time of these tests, the EPA has rescinded the promulgated piston
engine standards (reference 1). This work is reported upon herein in the
same light as it would have been if the requirements were still in effect,

DISCUSSION

DESCRIPTION OF TELEDYNE CONTINENTAL MOTORS GTSIO-520-K ENGINE.

The GTSI0-520-K engine tested at NAFEC is a turbo supercharged fuel injected,
horizontally opposed engine with a nominal 520 cubic inch displacement (cid),
rated at 435 brake horsepower (bhp) for a nominal brake specific fuel consump-
tion (bsfc) of 0.70. This engine is designed to operate on 100/130 octane
aviation gasoline (appendix A--Fuel Sample Analycis of NAFEC Test Fuel),

The vital statistics for this engine are provided in table 1.

TABLE 1, TCM GISIO~520-K ENGINE

No., of Cylinders 6
Cylinder Arrangement HO
Max, Engine Takeoff Power (HP, RPM) 435,3400
Bore and Stroke (in.) 5.25 x 4.00
Displacement (cu. in.) 519.54
Weight, Dry (1bs)--Basic Engine 614
Propeller Drive Geared
Fuel Grade--Octane Rating 100/130
Compression Ratio 7.5:1
Max, Cylinder Head Temperature Limit (°F) 460
Max. Allowable Exhaust Gas Temperature (°F) 1650
Drive Ratio 0.67:1

DESCRIPTION OF TEST SET-UP AND BASIC FACILITIES.

For the NAFEC sea level static tests, the engines were installed in the pro-
peller test stand shown in figures 1 and 2. This test stand was located in
the NAFEC General Aviation Piston Engine Test Facility. The test facility
provided the following capabilities for testing light aircraft piston
engines:

2
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(1) 7Two basic air sources—-dry bottled and ambient air

{(2) Ambient temperatures (20 to 140 degrees Fahrenheit (°F))

(3) Nominal sea level pressures (28,50 to 31,50 inches of mercury
absolute (inHgA)

(4) Humidity (specific humidity——0 to 0.020 1b of water (H20) vapor/lb
dry air)

(5) Fuel (100/130 octane aviation gasoline-—a dedicated 5,000-gallon tank)

DESCRIPTION OF AIR INDUCTION SYSTEM AND AIRFLOW COMPUTATIONS.

The airflow system (induction system) utilized at NAFEC for testing light-
aircraft piston engines is illustrated in figure 3. This system incorporated
a redundant airflow measuring system for accuracy and reliability. In the
high-flow measuring section NAFEC utilized a 4.0-inch orifice and an
Autronics air meter (model 100-750S). The capability of this high-flow
system ranged from 800 to 4,000 pounds per hour with an estimated tolerance in
flow accuracy of +2 percent. The low-flow measuring section utilized a small
1.375-inch orifice and an Autronics air meter (model 100-100S). The capabil-
ity of this system ranged from 80 to 800 pounds per hour with an estimated
tolerance in flow accuracy of +3 percent. The size of the basic air duct was
8.0 inches (inside diameter) for the high-flow system and 2.0 inches (inside
diameter) for the low-flow system.

The airflow was computed from the orifice differential pressure and induc-
tion air density using the following equation:

Wa (total) = (1891) (Cg) (d)? (.03609) (4P,) 1/2 (Reference 2)

LP = inH,0 (differential air pressure)
- = 1b/ft3 (induction air density)
do = inches (orifice diameter)

Cg = flow coefficient for orifice (nondimensional)
1891 = conversion constant for airflow in pounds per hour (lb/h).

For the 4.,0-inch orifice this equation simplifies to:
Wa (total) = 3621.14 ( AP, y1/2

For the 1.375-inch orifice this equation simplifies to:
Wa (low flow) = 472.03 (4P, y1/2

DESCRIPTION OF FUEL FLOW SYSTEM.

The fuel flow system utilizied during the NAFEC light-—aircraft piston engine
emission tests incorporated rotameters and turboflow meters. The high-flow
section incorporated a rotameter in series with a high~flow turbometer, while
the low-flow section incorporated a low-flow turbometer in series with a
low-flow rotameter, The high-flow system was capable of measuring fuel flows
from 50 1b/h up to 500 lb/h with an estimated tolerance of +1.0 percent.
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The low-flow system was capable of flow measurements ranging from 0-50 1b/h
with an estimated tolerance of +2.0 percent. Figure 4 illustrates the NAFEC
fuel flow system in schematic form.

DESCRIPTION OF COOLING ATIR SYSTEM,

The NAFEC piston engine test facility also incorporated a system which provided
cooling air (see figure 1) to the engine cylinders. The engine mounted in the
test stand was enclosed in a simulated nacelle, and cooling air was provided to
this enclosure from an external source. The cooling air temperature was main-
tained within +10° F of the induction air supply temperature for any specified
set of test conditions. This not only minimized variations in temperature but
also minimized variations in the specific weight of air for all test conditioms.
All of the basic cooling air tests with the GTSIO-520-K engine were conducted
with differential cooling air pressure of 4.0 inH90. During taxi mode tests,
the cooling air differential pressure was approximately equal to 0 inH20,

DESCRIPTION OF TEST PROCEDURES AND EPA STANDARDS.

The data presented in this report were measured while conducting tests in
accordance with specific landing and takeoff (LTO) cycles and by modal lean-
out tests., The basic EPA LTO cycle is defined in table 2,

The FAA/NAFEC contract and in-house test programs utilized an LTO cycle which
was a modification of the table 2 test cycle. Table 3 defines this modified
LTO cycle which was used to evaluate the total full-rich emission characteris-
tics of light-aircraft piston engines,

TABLE 2, EPA FIVE-MODE LTO CYCLE

Mode No. Mode Name Time-In-Mode (Min.) ©Power (%) Engine Speed (%)
1 Taxi/idle (out) 12,0 * *
2 Takeoff 0.3 100 100
3 Climb 5.0 75-100 *
4 Approach 6.0 40 *
5 Taxi/idle (in) 4,0 * *

*Manufacturer's Recommended
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TABLE 3, FAA/NAFEC SEVEN-MODE LTO CYCLE

Mode Mode Time-In~-Mode Power Engine Speed
No. Name (Min,) (%) Z
1 Idle (out) 1,0 * *
2 Taxi (out) 11,0 * *
3 Takeoff 0.3 100 100
4 Climb 5.0 80 *
5 Approach 6.0 40 *
6 Taxi (in) 3.0 * *
7 Idle (in) 1,0 * %

*Manufacturer's Recommended

An additional assessment of the test data clearly indicated that further
evaluations of the general aviation piston exhaust emissions must be analyzed
with the climb mode emissions at 100-percent and 75-percent power setting
(tables 4 and 5). This would then provide the basis for a complete evalua-
tion of test data and permit a total assessment of the proposed EPA standard
based on LTO cyclic tolerances, Tests were conducted at these settings,

TABLE 4.  MAXTMUM FIVE-MODE LTO CYCLE

Mode No. Mode Name Time-In-Mode (Min.) Power (%) Engine Speed (%)
1 Taxi (out) 12,0 * *
2 Takeoff 0.3 100 100
3 Climb 5,0 100 100
4 Approach 6,0 40 *
5 Taxi (in) 4,0 * *

*Manufacturer's Recommended




TABLE 5. MINIMUM FIVE-MODE LTO CYCLE

Mode No. Mode Name Time-In~Mode (Min) Power (%) Engine Speed (%)
1 Taxi (out) 12.0 * *
2 Takeoff 0.3 100 100
3 Climb 5.0 75 *
4 Approach 6.0 40 *
5 Taxi (in) 4,0 * *

*Manufacturer's Recommended

The EPA Standards (reference 1) that were evaluated during this program were:
Carbon Monixide (C0)—0,042 1b/cycle/rated BHP
Unburned Hydrocarbon (HC)—0.0019 1b/cycle/rated BHP
Oxides of Nitrogen (NO,)--0.0015 1b/cycle/rated BHP

DESCRIPTION OF EMISSIONS MEASUREMENT SYSTEM (REFERENCE 3).

EMISSION ANALYZERS. The instrumentation used to monitor the exhaust emissions
from general aviation piston engines was basically the same as that recommended
by EPA, but with a number of modifications and additions to enhance the reli-
ability and accuracy of the system. A schematic of the emissions measurement
system is shown in figure 5.

EMISSION INSTRUMENTATION ACCURACY/MODIFICATION. The basic analysis instru-
mentation utilized for this system is explained in the following paragraphs.,

Carbon Dioxide. The carbon dioxide (CO7) subsystem is constructed around
a Beckman model 864-23-2-4 nondispersive infrared analyzer (NDIR). This analy-
zer has a specified repeatability of +1 percent of full scale for each operat-
ing range. The calibration ranges on this particular unit are: Range 1, 0
to 20 percent; Range 3, 0 to 5 percent, Stated accuracy for each range is,
therefore, +0.2 and +0.05 percent, respectively.

Carbon Monoxide. The subsystem used to measure carbon monoxide (C0O) is
constructed around a Beckman model 865-X-4-4-4 NDIR., This analyzer has a
specified repeatability of +1 percent of full scale for ranges 1 and 2 and
+2 percent of full scale for range 3.

Range 1 has been calibrated for 0 to 20 percent by volume, range 2 for
0 to 1,000 parts per million (ppm), and range 3 for O to 100 ppm, The wide-
range capability of this analyzer is made possible by using stacked sample
cells which in effect give this analyzer six usable ranges when completely
calibrated.

10

[ — e e e .- - —_—




FILTER
HEATED 150°C 65°C =2 65°C
Q;‘ﬁ‘ FILTERE - —pg—— - — ';—‘D&—j-v FLOWMETERS
PUMP B :
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INLET : : ™ BECKMAN
150°C ) 2
| (o TRA 8s4
: ] CO:
t 1
| FILTER l
i
| ! BECKMAN
i
BECKMAN BECKMAN ‘c‘:
402 FID 951 HX
THC NO/NOx
BECKMAN
< om-11
0,
FLOWMETER
EXHAUST EXHAUST BYPASS
* CARBON DIOXIDE—CO,
* NONDISPERSIVE INFRARED {NDIR)
* RANGE 0-20%
* REPEATABILITY * 0.2% <o,
* CARBON MONOXIDE —CO
* NDIR
* RANGE 0-20%
* REPEATABILITY + 0.2% co
* TOTAL HYDROCARBONS — THC
* FLAME IONIZATION DETECTOR {(FID)
* RANGE 0-150.000 ppm
* MINIMUM SENSITIVITV 1.5 ppm,
* LINEAR TO 150.000 ppm,
* OXIDES OF NITROGEN —NO,
¢ CHEMILUMINESCENT {CL)
* RANGE 0-10,000 ppm
* MINIMUM SENSITIVITY 0.1 ppm
* OXYGEN-O,
* POLARAGRAPHIC
* RANGE 0-100%
¢ REPEATABILITY 0.1% 0,
* RESPONSE 200 ms
78-28-6
FIGURE 5. SCHEMATIC OF EMISSIONS MEASUREMENT SYSTEM

AND ITS MEASUREMENT CHARACTERISTICS
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Effects of interfering gases, such as CO2 and water vapor, were deter-
mined and reported by the factory, Interferences from 10 percent CO02 were
determined to be 12 ppm equivalent CO, and interferences from 4 percent water
vapor were determined to be 6 ppm CO equivalent. Even though the interference
from water vapor is negligible, a condenser is used in the CO/CO2 subsystem to
eliminate condensed water in the lines, analyzers, and flowmeters. This con-
densation would have decreased analyzer sensitivity and necessitated more fre-
quent maintenance if it had been eliminated.

Total Hydrocarbons. The system that is used to measure total hydrocarbons
is a modified Beckman model 402 heated flame ionization detector., This analyzer
has a full-scale sensitivity that is adjustable to 150,000 ppm carbon with
intermediate range multipliers 0.5, 0.1, 0,05, 0.01, 0.005, and 0.001 times
full scale,

Repeatability for this analyzer is specified to be +1 percent of full scale
for each range. In addition, this modified analyzer is linear to the full-
scale limit of 150,000 ppm carbon when properly adjusted. The two majcr modi-
fications which were made to this analyzer were the installation of a very fine
metering value in the sample capillary tube, and the installation of a» accurate
pressure transducer and digital readout to monitor sample pressure. Both of
these modifications were necessary because of the extreme pressure sensitivity
of the analyzer (figures 6 through 8). Correct instrument response depends on
the amount of sample passing through a capillary tube; as a result, if there
is too high a sample flow, the analyzer response becomes nonlinear when a high
concentration gas is encountered. Sample flow may be controlled by varying
the pressure on this capillary or increasing the length of the capillary, On
this analyzer, linearity to 50,000-ppm carbon was obtained by reducing the
sample pressure to 1,5 pounds per square inch gauge (psig) . However, the need
for linearity to 120,000-ppm carbon was anticipated. Further reduction of the
sample pressure increased the noise level of the analyzer to an unacceptable
level., In order to reduce the flow through the capillary without using a lower
pressure, either the length or the resistance of the capillary had to be
increased. The standard modification for this analyzer in order to limit flow
is the installation of an additional length of capillary tubing. This procedure
requires trial and error determination of proper capillary length and is a
permanent modification that limits sensitivity at low hydrocarbon levels., By
installing a metering valve in the capillary, flow could be selectively set at
either low flow for linearity at high concentrations or high flow for greater
sensitivity at low concentrations, Installation time was reduced by eliminating
the cut-and-try procedure for determining capillary length.

The addition of a sensitive pressure transducer and digital readout to
monitor sample pressure was needed since the pressure regulator and gauge sup-
plied with the analyzer would not maintain the pressure setting accurately at
low pressures. Using the digital pressure readout, the sample pressure could
be monitored and easily maintained to within 0,05 inH20.

Oxides of Nitrogen. Oxides of nitrogen (NOx) are measured by a modified
Beckman model 951H atmospheric pressure, heated, chemiluminescent analyzer
(CL). This analyzer has a full-scale range of 10,000 ppm with six intermediate
ranges, Nominal minimum sensitivity is 0.1 ppm on the 10 ppm full-scale range,
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The atmospheric pressure analyzer was chosen because of its simplicity,
ease of maintenance, and compactness. Anticipated water vapor problems in the
atmospheric pressure unit were to be handled by the heating of the internal
sample train. Interference from CO2 quenching, common in the atmospheric
pressure type CL analyzer, was checked and found to be nonexistent,

A series of major modifications were performed by the manufacturer on this
analyzer to insure compliance with specifications, One such modification was
installed im order to maintain the temperature of the sample stream above the
dew point of the sample gas., Originally this analyzer was specified to main-
tain a temperature of 140° F at all points in contact with the sample. After
a survey of the 951H analyzers in use on FAA projects, it was determined that
this temperature was not being achieved because the method used to heat the
components was inadequate. A recommendation was made to the manufacturer to
install a positive method of heating the sample tube compartment and reaction
chamber that would be thermostatically controlled. In time, the modification
was made, and this problem was eliminated. Increasing the temperature of the
internal sample components eliminated the condensed water problem; however, the
elevated temperature caused an instability in the photomultiplier tube output.
Another recommendation was made to thermostatically control the temperature of
this tube. This was accomplished by installing an electronic cooling jacket
designed to maintain the photomultiplier tube at a constant temperature below
the internal case temperature.

A further modification required was the addition of a flow control valve
to adjust and balance the flow rate through the NO and NO, legs., This valve
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replaced a restrictor clamp that was used by the manufacturer to set the NO to
NOx flow balance., The problem that was encountered with this clamp was that it
was not a positive method of adjusting the restriction on the capillary. The
clamp compression was affected by the flexible material on which the clamp was
mounted and the variable flexibility of the Teflon capillary as it was heated.
This caused the restriction on the capillary to change with time and caused
permanent deformation of the capillary allowing only an adjustment that would
increase the restriction,

Oxygen Measurement, Oxygen (02) was measured by a Beckman model OM-11
oxygen analyzer. This analyzer uses a polagraphic type sensor unit to measure
oxygen concentration, An advanced sensor and amplification system combine to
give an extremely fast response and high accuracy. Specified response for
90 percent of final reading is less than 200 milliseconds (ms) with an accuracy
of less than +0.l-percent 02. The range of this unit is a fixed 0 to 100 per-
cent 02 concentration,

EMISSIONS INSTRUMENTATION MODIFICATION STATUS DURING THE TESTING OF THE
GTSI10~520-K ENGINE. The tests conducted with the TCM GTST9-520-K engine uti-
lized the Beckman model OM-11 oxygen (02) analyzer and a prototype Beckman
model 951H oxides of nitrogen (NOy) analyzer.

All of the emissions and exhaust constituent-measuring instruments/analyzers
incorporated the latest specified modifications described in this report.

DESCRIPTION OF SAMPLE HANDLING SYSTEM.

Exhaust samples are transported to the analysis instrumentation under pressure
through a 35-foot-long, 3/8-inch o.d., heated, stainless steel sample line.
The gas is first filtered and then pumped through this line by a heated Metal
Bellows model MB-158 high temperature stainless steel sample pump, The pump,
filter, and line are maintained at a temperature of 300° +4° F to prevent con-
densation of water vapor and hydrocarbons. At the instrument conscle, the
sample is split to feed the hydrocarbon, oxides of nitrogen, and C0/C02/02
subsystems which require different temperature conditioning. The sample gas
to the total hydrocarbon subgsystem is maintained at 300° F while the tempera-
ture of remaining sample gas to the NOx and C0/C02/02 system is allowed to
drop to 150° F. Gas routed to the oxides of nitrogen subsystem is then main-
tained at 150° F, while the gas to the C0/C02/02 subsystem is passed through

a 32° F condenser to remove any water vapor present in the sample. Flow rates
to each analyzer are controlled by a fine-metering valve and are maintained at
predetermined values to minimize sample transport and system response time.
Flow is monitored at the exhaust of each analyzer by three l5-centimeter (cm)
rotameters. Two bypasses are incorporated into the system to keep sample
transport time through the lines and condenser to a minimum without causing
adverse pressure effects in the analyzers.

DESCRIPTION OF FILTRATION SYSTEM.

Particulates are removed from the sample at three locations in the system,
thereby minimizing downtime due to contaminated sample lines and analyzers
(figure 5). Upstream of the main sample pump is a heated clamshell-type stain-
less steel filter body fitted with a Whatman GF/C glass fiber paper filter
element capable of retaining particles in the 0.1 micron range. A similar
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filter is located in the total hydrocarbon analyzer upstream of the sample
capillary. A Mine Safety Appliances (MSA) type H ultra filter capable of
retaining 0.3 micron particles is located at the inlet to the oxides of nitrogen
and CO/CO,/07 subsystems.

COMPUTATION PROCEDURES.

The calculations required to convert exhaust emission measurements into mass
emissions are the subject of this section.

Exhaust emission tests were designed to measure COp, CO, unburned hydrocarbons
(HC) , NOy, and exhaust excess 0j concentrations in percent or ppm by volume.
Mass emissions were determined through calculations utilizing the data obtained
during the simulation of the aircraft LTO cycle and from modal lean-out data.

COMBUSTION EQUATION. The basic combustion equation can be expressed very simply:

Fuel + Air = Exhaust Constituents

An initial examination of the problem requires the following simplifying
assumptions:

1. The fuel consists solely of compounds of carbon and hydrogen.
2. The air is a mixture of oxygen and inert nitrogen in the volumetric ratio
of 3.764 parts apparent nitrogen to 1.0 part oxygen (see appendix B for
additional details).

3. If a stoichiometric combustion process exists, the fuel and air are sup-
plied in chemically correct proportions,

4, The fuel (which consists usually of a complex mixture of hydrocarbons)
can be represented by a single hydrocarbon having the same carbon-hydrogen
ratio and molecular weight as the fuel; usually CgHj7 as an average fuel,

Applying the above assumptions for stoichiometric conditions, a useful general
reaction equation for hydrocarbon fuel is:

MgCgH17 + M, <02 + 3.764N) + Mwﬂzo)» MCOy + M3Hp0 + MsN2 (1)
(References 4 and 5)
Where Mg = Moles of Fuel
M, = Moles of Air or Oxygen

M; = Moles of Carbon Dioxide (CO2)
M3 = Moles of Condensed Water (H20)

Ms = Moles of Nitrogen (N2) - Exhaust
3.764M; = Moles of Nitrogen (Nj) - In Air
MaMy = Moles of Humidity (H70) - In Air

The above equation is applicable to dry air when M, is equal to zero,
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From equation (1), and assuming dry air with one mole of fuel (M¢=1.0), the
stoichiometric fuel-air ratio may be expressed as:

(F/A) g = Wt. Fuel = 12,011 (8) + 1.008 (17) 2)
Wt. Air Required 12,25 [32.000 + 3.764(28.1614

(F/A) g = 113.224 = 0.067
12.25(137.998)

The mass carbon-hydrogen ratio of the fuel may be expressed as follows:

C/H = 12,001(8) = 96,088 = 5.607 (3)
1.008(17) 17.136

The atomic hydrogen-carbon ratio is:
17/8 = 2,125 (4)

The stoichiometric fuel-air ratio may be expressed as a function of the mass
carbon-hydrogen ratio of the fuel., The derivation of this equation is
presented in reference 4,

(F/D = C/H + 1 (5)
11.5(C/H+3)

(F/A)s = 0,067 for a mass carbon-hydrogen ratio of 5.607

With rich (excess fuel) mixtures, which are typical for general aviation piston
engines, some of the chemical energy will not be liberated because there is

not enough alr to permit complete oxidation of the fuel. Combustion under such
conditions is an involved process. By making certain simplifying assumptions
based on test results, the effect of rich mixtures may be calculated with
reasonable accuracy.

For rich (excess fuel) mixtures, equation (1) will now be rewritten to express
the effects of incomplete combustion:

MgCgH17 + My (0 + 3.764N7 + MgH20) - MjCO2 + MpCO + M3H20 + MgHp +
MgN2 + MgNO + M7CH4 + Mg02 + MgC (6)

Since only a limited number of the exhaust constituents were measured during
the testing of general aviation piston engines, the above equation can only be
solved by applying certain expeditious assumptions and emperical data.

An important requirement was the accurate measurement of air and fuel flows.
These parameters provide the data for determining engine mass flow (Wp), and
with the aid of figure 9 (developed from reference 6), it is a simple computa-
tion to calculate the total moles (Mtp) of exhaust products being expelled by
general aviation piston engine.,
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(Mtp) = Wy (engine mass flow) + (exh, mol. wt) (7
Since the unburned hydrocarbons (HC) and oxides of nitrogen (NOy) are measured
wet, it becomes a very simple matter to compute the moles of HC and NOx that
are producecd by light~aircraft piston engines.

M7 (Moles of HC) =(ppm ¢+ 106) x My, (8)

Mg (Moles of NOy) =(ppm + 106) x M¢p 9)

If the dry products (Mgp) of combustion are separated from the total exhaust
products (Mtp), it is possible to develop a partial solution for five ot the
products specified in equation 6.

This can be accomplished as follows:

The summation of the mole fractions (MF)4 for dry products is

m} +my + my +mg + mg = 1,0000 (10)

m] = MF(CO2) = %CO2 (measured dry), expressed as a fraction

my = MF(CO) = %CO (measured dry), expressed as a fraction

m4 = MF(H2) = K4 (%CO) (see figure 10, also references 4, 5, and 6),
expressed as a fraction

mg = MF(0p) = %20, (measured dry), expressed as a fraction

m5 = 1,0000 - (m} + mp + my4 + mg) = ZN2 (dry), expressed as a (11)

fraction

Utilizing the nitrogen balance equation, it is now possible to determine the
moles of nitrogen that are being exhausted from the engine.

Ms = 3,764M, - (Mg + 2); Mg = moles (NO) (12)

The moles of exhaust dry products (Mdp) may now be determined by dividing
equation 12 by equation 11.

Mdp = M5 + mg (13)
Using all the information available from equations (7), (8), (9), (10), (11),

(12), and (13), it is now possible to determine the molar quantities for seven
exhaust products specified in equation 6.

Moles (CO2) = M; = mj x Mgp (14)

Moles (CO) = M2 = mpy x Mgp 15

Moles (H2) = M4 = my x Mgp (18)
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Moles (Np) = M5 = m5 x Mdp Qan
Moles (02) = M8 = mg x Mdp (18)
Moles (CH4) = Mz = (ppm + 106) x Mtp (19)
Moles (NO) = Mg = (ppm + 106) x Mep (20)

To determine M3 (moles of condensed Hp0), it is now appropriate to apply the
oxygen balance equation.

M3 =M, (2 + M) - () + My + Mg+ 2Mg) = Moles (H,0) (21)

The remaining constituent specified in equation 6 may now be determined from
the carbon balance equation 22.

Mg = 8 — (M; + My +M;) (22)

A check for the total number of exhaust moles (Myp), calculated from equation
9, may now be determined from equation 23,

Mep = My + My + My + M, + Mg + Mg + My + Mg + Mg (23)
hy +mp +m3 + m, + Ay + D + Dy + mg + mg = 1.0000 (24)
51 = MF(CO2) = M; + Mep

ﬁz = MF(CO) = M2 #+ Mtp

my = MF(Hy0) = M3 + M,

m, = MH(Hp) = My + Mep

mg = MF(N) = My + Mep

mg = MH(NO) = Mg + Mp

A7 = MF(CH,) = M; + Mip

mg = MF(0y) = Mg # M,

mg = MF(C) = Mg + M,

The exhaust constituent mass flow rates may be computed in the following
manner using each exhaust constituents molar constant with the appropriate
molecular weight.

M; x 44,011 = CO, in 1b/h (25)

M, x 28,011 = CO in 1b/h (26)
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M3 x 18.016 = Hs0 in 1b/h (27)

M, x 2,016 = Hy in 1b/h (28)
M5 x 28.161 = N, in 1b/h (29)
Mg x 30,008 = NO in 1b/h (30)
M7 x 16,043 = CH, in 1b/h (31)
Mg x 32,000 = 0y in 1b/h (32)
Mg x 12,011 = C in 1b/h (33)

The exhaust fuel flow (Wge), based on exhaust constituents, can now be
calculated on a constituent-by-constituent basis as follows:

(M7 + My + Mg) x 12,011 = 1b/h (34)
M7 x 16,043 = 1b/h (35)
(M3 - M M) + M, x 2,016 (36)
Wge = (34) + (35) + (36) = 1b/h 37)

In a similar manner the exhaust airflow (W,,) can also be calculated on a
constituent-by~constituent basis:

M; x 32,000 = 1b/h (38)
My x 16,000 = 1b/h (39)
(M3 x 16,000) + (MzM, x 18.016) = 1b/h (40)
M5 x 28,161 = 1b/h (41)
Mg x 30,008 = 1b/h (42)
Mg x 32.000 = 1b/h (43)
Wae =3 (38)4> (43) = 1b/h (44)

Using equations (37) and (44) it is now possible to determine a calculated
fuel~air ratio on the basis of total exhaust constituents.

(F/A)calculated = (37) + (44) (45)
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RESULTS

GENERAL COMMENTS.

General aviation pistion engine emission tests were conducted to provide the
following categories of data:

1. Full-rich (or production fuel schedule) baseline data for each power
mode specified in the LTO test cycle.

2. Lean-out data for each power mode specified in the LTO test cycle.
3. Data for each power mode specified in the LTO test cycle utilized cooling
airflow AP = 4.0 inH90 at takeoff, climb, and approach powers. Taxi/idle mode

cooling airflow AP was approximately equal to zero,

RESULTS OF BASELINE TESTS (LANDING-TAKEOFF CYCLE EFFECTS).

Based on an analysis of the factors affecting piston engine emissions, it ca:
be shown that the mode conditions having the greatest influence on the gross
pollutant levels produced by the combustion process are taxi, approach, and
climb when using the LTO cycle defined in tables 3, 4, and 5. The five-mode
LTO cycle shows that approximately 99 percent of the total cycle time
(27.3-min) is attributed to these three modal conditions., Furthermore, the
taxi modes (both out and in) account for slightly less than 59 percent of the
total cycle time. The remainder of the time is almost equally apportioned to
the approach and climb modes (22 and 18 percent, respectively).

As a result of these time apportiomnments, it was decided that an investigation
and evaluation of the data should be undertaken to determine which mode(s) has
the greatest influence on improving general aviation piston engine emissions.
The subsequent sections of this report will show the exhaust emissions char-
acteristics for a Teledyne Continental Motors (TCM) GTSI0-520-K engine
(5/N220015) and what improvements are technically feasible within the limits
of safe aircraft/engine operational requirements based on sea level propeller
test stand evaluations conducted at NAFEC,

The first set of data to be presented and evaluated is the five-mode baseline
runs conducted to establish the current production full-rich exhaust emissions
characteristics of the GTSI0-520-K engine. These are summarized in tabular
form in appendix C (see tables C-1 through C-20) and includes data that were
obtained for a range of sea level ambient conditions, specified as follows:

Induction air temperature (T{) = 60° F to 135° F
Cooling air temperature (Tc) =Ty +10° F

Induction air pressure (Pj) = 29,70 to 31.15 inHgA
Induction air density (p) = 0.0680 to 0,0770 1b/ft3
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Figure 1l presents five-mode baseline data in bargraph form (for different sea
level ambient conditions). It also compares the total emissions characteristics
of the GISI0-520-K engine (current production configuration) with the proposed
EPA standards as a function of percent of standard. The data that were utilized
to develop figures 11, 12, and 13 are tabulated in appendix C and plotted in
various forms for analysis and evaluation in figures C-1 through C-23.

RESULTS OF LEAN-QUT TESTS.

In the subsequent sections of this report, it will be shown what improve-
ments can be achieved as a result of making lean-out adjustments to the fuel
metering device: (1) taxi mode only, (2) taxi and approach modes combined,
and (3) leaning-out the climb mode to "best power" or maximum cylinder head
temperature in combination with taxi and approach mode leaning.

EFFECTS OF LEANING-OUT ON CO EMISSIONS. The test data obtained as a result of
NAFEC testing the Teledyne Continental Motors GISIO0-520-K engine have heen
evaluated on the basis of leaning-out the taxi, approach, and climb modes while
continuing the operation of the test engine at the production rich and lean
limits in the takeoff mode. The results of leaning-out under this procedure
are shown in bargraph form in figure 12,

When the taxi modes (out and in) were leaned-out from the production rich or
lean limits to a fuel-air ratio of 0,075, but not lower than stoichiometric
(F/A = 0,067) (see figure 12), CO emissions are reduced approximately 12 per-
cent, However, adjustments to the taxi mode fuel schedule alone are not
sufficient to bring the total five-mode LTO cycle CO emission level below

the proposed federal standard.

Simultaneously, leaning-out both the taxi and approach modes to fuel-air ratios
between 0.067 to 0,075 will result in additional improvements in CO emissions.
In the case of operating the engine at production rich limits for takeoff and
climb while operating taxi and approach at F/A = 0.075, the total five-mode

LTO cycle CO emission level will be reduced approximately 34 percent as

shown in figure 12,

Additional improvements in the total five-mode LTO cycle for CO emissions
can be achieved, as shown in figure 12, if the engine is adjusted to operate
at "best power" or maximum cylinder head temperature fuel-air ratios in the
climb mode while operating the approach and taxi modes at F/A = 0.075 or
lower (not lower than fuel-air ratio (F/A) = 0,067). The CO emission level
will be reduced approximately 75 percent,

The preceding evaluation of CO emissions characteristics was based on the LTO
cycle defined by table 5, However, the EPA five-mode LTO cycle defined by
table 2 implies that the climb mode power levels range from 75 to 100 percent.
The exhaust emissions produced will be drastically affected. Examination

of the measured data produced at NAFEC shows that there is a significant dif-
ference in each engine's total LTO cycle emissions output when climbing at

100 percent power compared to climbing at 75-or 80~percent power. This

B
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data evaluation also shows that whereas a CO limit of 0,042 pounds per cycle
per rated brake horsepower may be approximately achievable as described
previously by using the LTO cycle defined by table 5; it is mot achievable
using an LTO cycle defined by table 4. When one considers the following safety
considerations: (1) sea level, hot-day takeoff requirements with an aircraft at
heavy gross weight and (2) altitude takeoff requirements with an aircraft at
heavy gross weight, it would appear that the EPA 0,042 1limit for CO is not
realistic and cannot be complied with unless engine operational and safety
limits are totally ignored,

Table 6 provides a summary of the NAFEC data which indicates what levels of
improvement in CO emissions can be achieved by applying simple fuel management
techniques (leaning-out by mixture control manipulations), albeit with drastic-
ally reduced margins between actual measured maximum cylinder head temperature
(CHT) and the maximum CHT limit,

Example: Consider the engine installed in a sea level (SL.) propeller stand and
operating with cooling air at a AP = 4.0 inH70 and the following critical
test conditions:

1. Ambient conditions (pressure, temperature, and density)—SL. stan.ard day
2,  Fuel schedule~-production rich setting

3. Power setting--1007%

4, Measured max, CHT—420° F

5. Max. CHT 1limit——460° F

6. Margin— 5 minus 4 —40° F

If we now adjust this engine fuel schedule setting to best power or max. CHT
limit (all other parameters constant based on above conditions), we now find
the following changes take place:

1. CO emissions are improved approx. 75% (nominal)

2, Measured max, CHT increases 9.5% (from 420° F to 460° F)
3. Max, CHT limit—460° F

4, Margin— 3 minus 2 = 0° F

5. Reduction in margin (max. CHT)--(40440) x 100 = 100.0%

Now, if we apply the above results to a SL., hot-day condition, we arrive at the
following results:

Production Rich Limit Schedule (100% power)

1., Ambient conditions——SL, hot day (95° F)
2. Fuel schedule-—production rich setting
3. Power setting--100% (nominal)

4, Measured max, CHT—435° F

5, Max, CHT 1limit-—460° F

6., Margin— 5 minus 4 = 25° F
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"Best Power Fuel Schedule" (100% Power) or Maximum Cylinder Head Temperature

1. Ambient conditions--~sea level hot day

2. Fuel schedule~-best power or maximum cylinder head temperature fuel
schedule

Power setting--1007 (nominal)

Measured max. CHT—460° F

Max. CHT limit--460° F

. Margin-— 5 minus 4 = 0° F

- Reduction in margin (max. CHT)—(20 + 20) x 100 = 100,0%

~Noy e W
.

EFFECTS OF LEANING-OUT ON HC EMISSIONS. The test data show that the TCM engine
can be leaned-out sufficiently in the taxi mode to bring the unburned hydro-
carbon emissions below the federal standard (figures 12 and 13). Additional
leaning=out in the approach and climb modes provides added improvements, but

is not required to produce HC emission levels below the federal standard.

EFFECTS OF LEANING-OUT ON NOx EMISSIONS. Oxides of nitrogen emission: are not
improved as a result of applying lean-out adjustments to the fuel met.ring
devices. In fact, the NOyx levels are at their lowest when the engine ‘s
operating full rich as shown in figure 11, Test results have shown that if
all the test modes (takeoff, climb, approach, and taxi) were leaned-out
excessively (F/A=0.067), the NOy emission level would exceed the federal
standard.

The negative effect on NOx emissions is one of the reasons why it was decided
to evaluate and study the effects of adjusting/manipulating selected mode con~
ditions rather than adopt the philosophy of adjusting all modes.

EFFECTS ON ALLOWABLE MAXIMUM CYLINDER HEAD TEMPERATURE. One of the major
problems that occurs as an effect of leaning-out general aviation piston engines
in order to improve emissions is the increase or rise in maximum cylinder head
temperatures.

Most general aviation aircraft are designed to operate with cooling air pres-
sure differentials of 4,0 inH90 or less. The tests conducted with the TCM
engine utilized 4.0 inH70 as the basic cooling flow condition for the approach
climb, and takeoff modes,

Data shown in tables C-1 through C-19 and plotted in figures 14 through 16
show the test results,

In summary it can be concluded that any attempts to lean-out current produc-
tion-type horizontally opposed general aviation piston engines in the takeoff
mode to F/A ratios lower than production lean limits will produce CHT's that
are higher than the manufacturer's specified limit,

Any attempt to lean-out the climb mode to F/A ratios below best power will
produce CHT's that are higher than the manufacturer's specified limit, This
will become particularly acute under hot-day takeoff and climb conditions at
sea level or altitude,

30

——— — e p—— - e - — - - - —




MAXIMUM CHT -~ °F

NOTE: COOLING AIR AP = 4,0 inH,O

480F
MAX., CHT LIMIT
460 — ~mmmm e e e A e
4401
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/
PRODUCTION LEAN ~—/
207 Lmrr / TAKEOFF
380
CLIMB
360 /~~—~—PRODUCTION RICH LIMIT
340
APPROACH
320f
300
L | L 1 ]
280
0. 06 0.07 0. 08 0. 09 0. 10 0.11
F/A (MEASURED) 79-40-15

FIGURE 14, SEA LEVEL STANDARD-DAY MAXIMUM CYLINDER HEAD TEMPERATURES

FOR DIFFERENT POWER MODE CONDITIONS AND VARYING FUEL-AIR
RATIOS--TCM GTSI0-520--K ENGINE
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MAXIMUM CHT - °F

NOTE: COOLING AIR AP = 4,0 inH,O

480 ¢
MAX. CHT LIMIT
O e e e e N\ - -
440 LRODUCTION LEAN
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420 |
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400 r
380 |-
CLIMB
360 |
PRODUCTION RICH
LIMIT
340 F
APPROACH
320
300 1 1 ) i i |
0. 06 0.07 0. 08 0. 09 0. 10 0. 11
F/A (MEASURED) 79-40-16

FIGURE 15. SEA LEVEL HOT-DAY (T1=103° F) MAXIMUM CYLINDER HEAD
TEMPERATURES FOR DIFFERENT POWER MODE CONDITIONS AND
VARYING FUEL-AIR RATIOS~-~TCM GTSI0-520-K ENGINE

32




FUEL FLOW
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FIGURE 16, MAXIMUM CYLINDER HEAD TEMPERATURE CHARACTERISTICS FOR A TCM

GTSI0-520~K ENGINE OPERATING ON A SEA LEVEL PROPELLER STAND
WITH CONSTANT COOLING AIR FLOW (AP = 4,0 inH20)
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SUMMARY OF RESULTS

EXHAUST EMISSIONS.

1. The GTSI0-520-K engine does not meet the proposed EPA carbon monoxide and
unburned hydrocarbon standards for 1979/80 under sea level standard day
conditions,

2, The GTSIO=-520~K engine meets the EPA oxides of nitrogen standard for
1979/80.

3. The engine fuel metering device could be adjusted on the test stand to
reduce the current CO exhaust emission level, but not to levels required by

proposed EPA standards when operating under the LTO cycle requirements,

4, The engine could be adjusted on the test stand to reduce the unburned
hydrocarbon exhaust emission level below the proposed EPA standard.

MAXTMUM CYLINDER HEAD TEMPERATURES.

1. Adjusting the fuel metering device in the takeoff and climb modes to
constant best power operation results in an increase in maximum CHT, which
will exceed the engine specification limit on the test stand if cooling air
AP is limited to 4,0 inHy0 or less,

2. No critical maximum CHT's result from leaning-out the approach and taxi
modes.

CRITICAL LANDING AND TAKEOFF CYCLE.

1. The most critical LTO cycle is the cycle defined in this report as maxi-
mum five-mode LTO cycle (table 4). Engine operation in accordance with the
maximum five-mode LTO cycle in a sea level propeller test stand could not be
adjusted to meet the proposed EPA (O-emission standard for 1979/80 without
exceeding engine maximum CHT limits,

2. Engine operation in accordance with the minimum five-mode LTO cycle
(table 5) could be adjusted to significantly improve the engine's emission
levels.

CONCLUSIONS

The following conclusions are based on the testing accomplished with the TCM
GTSI0-520-K engine.

1. The single use of simple fuel management adjustments (altering of fuel
schedule) do not allow safe reduction of exhaust emissions of the test engine,
the TCM GTSI0-520-K. 1In conjunction with other data, references 12, 13, 14,
15, and 16, this appears to be a valid general conclusion for typical light-
afrcraft piston engines.
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2. The test data indicate that fuel management adjustments must be combined
with engine/nacelle cooling modifications before safe and optimum low-emission
aircraft/engine combinations can be achieved.

3. The EPA CO limit of 0.042 1b/cycle/rated BHP is not achievable when take-
off and climb requirements are impacted by aircraft heavy gross weight and the
need to pay close attention to CHT limitations,

4, Based on an assessment of the maximum five-mode LTO cycle (table 4) test
data, it is concluded that the following standard changes should be made to
the proposed EPA emission standards:

Proposed EPA Std.

For 1979/80 Proposed Change to the 1979/80 Std.
(1b/cycle/rated -BHP) (1b/cycle/rated BHP)

CO Standard 0.042 0.075

HC Standard 0.0019 0.0025

NOx Standard 0,0015 0.0015

5. To avoid CHT problems in the takeoff mode (100-percent power), it is
advisable not to adjust the fuel metering device. Engine operation in this
mode should continue to be accomplished within current production rich/lean
limits,
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APPENDIX A

FUEL SAMPLE ANALYSIS

COMBUSTIBLE ELEMENTS IN FUELS (AVIATION FUEL).

1. Carbon and hydrogen are the predominant combustible elements in fuels
(aviation type), with small amounts of sulphur as the only other fuel element,

2, Liquid fuels are mixtures of complex hydrocarbons.

3. For combustion calculations, gasoline or fuel oil can be assumed to have
the average molecular formula CgHy7.

Note: The Exxon data presented in table A-1 may be found in reference 7.

TABLE A-1. TYPICAL SPECIFICATIONS FOR AVIATION FUELS

D910-76 Exxon D910-70 Exxon
Grade Aviation Gas Grade Aviation Gas

Item 100/130 100/130 115/145 115/143
Freezing Point, °F ~72 Max. Below -76 -76 Max, Below -76
Reid Vapor Press., PSI 7.0 Max. 6.8 7.0 Max. 6.8
Sulfur, 7 by Weight 0.05 Max. 0.02 0.05 Max. 0.02
Lower Heating Value, 18,720 Min. 18,800 Min.
BTU/1b ' N
Heat of Comb, (NET). 18,960 19,050
BTU/1b
Distillation,
%Evaporated
At 167° F (Max.) 10 22 10 21
At 167° F (Min.) 40 40
At 221° F (Max.) 50 76 50 62
At 275° F (Max.) 90 97 90 96
Distillation End 338° F Max, 338° F Max.
Point
Final Boiling 319 322
Point °F
Tel Content, 4,0 Max, 3.9 4.6 Max, 4,5
ML/U.S. Gal.
Color Green Green Purple Purple

4, NAFEC used 100/130 (octane rated) aviation gasoline for the piston
engine emission tests., The following analysis of a typical fuel sample
(table A-2) made at the U.S., Naval Air Propulsion Test Center (NAPTC),
Trenton, N.J, (reference 8),.




Item

Freezing Point, °F
Reid Vapor Press., PSI
Sulfur 7 By Weight
Lower Heating Value

BTU/1b

Heat of Comb. (NET)

BTU/1b
Distillation,
% Evaporated

At
At
At
At
At
At
At
At

158°
167°
167°
210°
220°
221°
242°
275°

TABLE A-2.

F
F (Min.)
F (Max,)

Lo I B L

Distillation

End Point
Specific Gravity
@60° F
APT Gravity
@60° F
Tel Content,
ML/U.S. Gal,

ANALYSIS OF NAFEC FUEL SAMPLE, 100/130 FUEL

NAFEC Grade 100/130(MIL~G-~5572E)
Sample Spec Limits
100/130 Min, Max,
Below ~76° F ~76
6,12 5.5 7.0
0.024 0.05
18,700
18,900
Distillation
% Evaporation
10
167° ¥ 10
40 167° F
40
50
221° F 50
90
275° F 90
313° F 338° F
0.7071 Report Report
68.6 No Limit
1.84 4,60

Computation for the fuel hydrogen-carbon ratio is based on the fuel net heating
value, hg, equal to 18,900 BTU/lb and figure A-1.

C/H = 5.6

g

C = 12,011
Cg = 8 x 12,011 = 96,088
= (96.088) + 5.6 = 17.159
= 1,008

Y = (17.159) + 1,008 = 17.022

Use Y = 17 ‘

A=2 ' .



APPENDIX B

COMPOSITION OF AIR (GENERAL PROPERTIES)

1. Dry air is a mixture of gases that has a representative volumetric analysis
in percentages as follows:

Oxygen (09)—20.99%

Nitrogen (Np)—78.03%

Argon (A)—0,94% (Also includes traces of the rare gases neon, helium,
and krypton)

Carbon Dioxide (C02)—0.03%

Hydrogen (H,)--0.01%

2. For most calculationg it is sufficiently accurate to consider dry air as
consisting of:

07 = 21.0%
Ny = 79.0% (including all other inert gases)

3. The moisture or humidity in atmospheric air varies over wide limits,
depending on meteorological conditions, its presence in most cases gimply
implies an additional amount of essentially inert material.

Note: Information given in items 1, 2, and 3 is recommended for computation
purposes (reference 3, 4, 9, and 10).

TABLE B-1. MASS ANALYSIS OF PURE DRY AIR

Volumetric Mole Molecular Relative
Gas Analysis 7 Fraction Weight Weight
02 20,99 0.2099 32.00 6,717
Ny 78.03 0.7803 28,016 21,861
A 0.94 0.0094 39.944 0.376
COz 0.03 0.0003 44,003 0.013
Inert Gases 0.01 0.0001 48.0 0.002
100.00 1.000 28,969 = M for air

4. The molecular weight of the apparent nitrogen can be similarly determined
by dividing the total mass of the inert gases by the total number of moles of
these components:

2225

79.01~ 28.161

HApparent =
Nitrogen

- ——— p— [P - - - —_— b —
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5. This appendix advocates the term nitrogen as referring to the entire group
of inert gases in the atmosphere and therefore the molecular weight of 28,161
will be the correct value (rather than the value 28,016 for pure nitrogen).

6. In combustion processes the active constituent is oxygen (032), and the
apparent nitrogen can be considered to be inert. Then for every mole of
oxygen supplied, 3.764 moles of apparent nitrogen accompany or dilute the
oxygen in the reaction:

79.01 = 3,764 Moles Apparent Nitrogen
20,99 Mole Oxygen

7. The information given in items 4, 5, and 6 is recommended for computational
purposes in reference 4., Therefore, one mole of air (dry), which is composed
of one mole of oxygen (0;) and 3.764 moles of nitrogen (N3), has a total weight
of 137,998 pounds.

(02 + 3.764 N) = 137.998

This gives the molecular weight of air = 28.97.




APPENDIX C

NAFEC TEST DATA AND WORKING PLOTS FOR ANALYSIS AND EVALUATION
TELEDYNE CONTINENTAL MOTORS (TCM) GTSIO-520-K ENGINE
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